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Abstract
Visual navigation systems have increasingly been adopted in many urban safety–critical applications, such as urban air 
mobility and highly automated vehicle, for which they must continuously provide accurate and safety-assured pose estimates. 
Extensive studies have focused on improving visual navigation accuracy and robustness in complex environment, while insuf-
ficient attention has been paid to ensuring navigation safety in the presence of outliers. From safety perspective, integrity is 
the most important navigation performance criterion because it measures the trust that can be placed in the correctness of 
the navigation output. Through leveraging the concept of integrity, this paper develops an integrity monitoring framework 
to protect visual navigation system against misleading measurements and to quantify the reliability of the navigation output. 
We firstly present the iterative least squares (LS)-based pose estimation algorithm and derive the associated covariance esti-
mation methodology. Then we develop a two-layer fault detection scheme through combining random sampling consensus 
(RANSAC) with multiple hypotheses solution separation (MHSS) to achieve high efficiency and high reliability. Finally, the 
framework determines the probabilistic error bound of the navigation output that rigorously captures the undetected faults 
and the measurement uncertainty. The proposed algorithms are validated using various simulations, and the results suggest 
the promising performance.

Keywords Visual navigation · Safety · Integrity · Fault detection · Autonomous systems

1 Introduction

Vision-based or -aided navigation systems have attracted 
wide interest because of their outstanding performance in 
urban environments where Global Navigation Satellite Sys-
tem (GNSS) becomes seriously vulnerable [12]. Accord-
ingly, visual navigation is an additional choice to realize 
the localization in urban safety–critical applications, such 
as urban air mobility (UAM) and highly automated vehicle 
(HAV), which are expected to bring great benefits to the 
society [1].

For these applications, ensuring the safety of visual local-
ization is on the top priority when designing the navigation 
algorithms. This is because, on the one hand, visual naviga-
tion is highly sensitive to operating and environmental con-
ditions, such as textures, presence of blurs and illumination 

changes. Therefore, the navigation system may perform well 
under some conditions, but in other environments, it might 
become unreliable. On the other hand, failure to correctly 
perform the localization task might lead to catastrophic 
damages to the vehicles, the passengers and people in the 
vicinity.

Consequently, it is highly imperative to not only improve 
navigation accuracy and robustness, but also to quantify the 
correctness of the navigation output. Up to now, prior work 
has mostly focused on the former task through optimizing 
the algorithms and developing some outlier rejection tech-
niques [9, 11, 13]. Though these algorithms greatly reduce 
the failure rate, it remains possible to further improve navi-
gation safety by performing the latter task, which is actually 
the objective of this study.

To this end, this paper develops a novel approach to real-
ize autonomous integrity monitoring of visual navigation, 
which is rarely addressed in the literature. We leverage the 
integrity concept developed in aviation to assess the safety of 
visual navigation in the UAM and HAV deployment. Integ-
rity measures the trust that can be placed on the correctness 
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of the navigation output, and integrity risk describes the 
probability that navigation system provides a hazardous 
misleading information without warning the user [15]. Obvi-
ously, integrity provides a direct way to quantify the level 
of safety from navigation perspective, and it is therefore 
employed to measure localization safety for urban autono-
mous systems. Furthermore, this metric and the associated 
analytical method perfectly complement the testing-based 
vehicle safety demonstration approaches [8].

Integrity monitoring is an essential approach to ensure 
navigation integrity, which involves two basic functions: 
one is to detect the faulted measurements, and the other 
is to quantify the safety risk. Various integrity monitoring 
methods have been established to ensure the integrity of 
GNSS-based navigation in civil aviation applications. The 
most representative approaches include receiver autono-
mous integrity monitoring (RAIM) and advanced RAIM 
(ARAIM), both of which are based on consistency check of 
redundant range measurements [4, 5].

Introducing these techniques into other navigation sys-
tems and other applications is more and more attractive, and 
some remarkable efforts have been made [2, 14]. However, 
to the best of our knowledge, only a few studies have focused 
on visual navigation integrity monitoring. Joerger et al. 
proposed an integrity monitoring method for laser-based 
navigation with an emphasis on feature extraction and data 
association [8]. In addition, Bhamidipati et al. developed 
a simultaneous localization and mapping (SLAM)-based 
integrity monitoring scheme for GNSS/vision integrated 
system [3]. Li et al. presented a RAIM-based integrity moni-
toring scheme for visual navigation by assuming that there is 
at most one faulted measurement (i.e., feature) after outlier 
rejection [10]. However, these existing approaches do not 
represent the general case and cannot address the challenges 
described as follows.

The significant difference between radio navigation and 
visual navigation makes it difficult to introduce the algo-
rithms developed in the GNSS domain into visual navigation 
context. In urban scenarios, feature-based visual navigation 
generally performs better than other approaches, such as 
optical flow method and template matching method, because 
of the rich textures in the environments [1]. The number of 
features in an image is usually close to or even over 100, 
and it is much larger than the number of pseudoranges used 
in GNSS applications. In addition, the fault ratio could be 
over 10%, which is severely beyond the capability of the 
traditional integrity monitoring algorithms. Furthermore, the 
spatial dependence in measurement failures cannot be negli-
gible in visual navigation [3], and thus the fault-independent 
assumption adopted by RAIM and ARAIM is not true here. 
Moreover, the pose estimation is usually implemented in 
an optimization-based approach in visual navigation while 
the existing integrity monitoring algorithms are mainly 

developed for least-squares (LS)- or filter-based navigation 
systems.

To account for all the challenges above, this paper devel-
ops a novel approach to realize visual navigation integrity 
monitoring. In this work, we firstly describe the general 
pipeline of feature-based visual navigation, highlighting 
the estimation of navigation states with matched features. 
Then we present the iterative LS-based pose estimation algo-
rithm and derive the associated real-time covariance estima-
tion methodology, based on which the integrity monitoring 
framework is developed. This framework includes a two-
layer fault detection scheme which employs both random 
sampling consensus (RANSAC) and multiple hypotheses 
solution separation (MHSS) to achieve both high efficiency 
and high reliability. In this scheme, we also exploit the fault 
grouping technique to reduce computational complexity and 
to cope with spatial dependence in the faults. In addition, to 
assess navigation integrity, this framework determines the 
probabilistic error bound that captures the undetected faults 
and the measurement uncertainty.

The layout of this paper is arranged as follows. Section 2 
describes the basic principle of visual navigation and clari-
fies the research scope. The pose estimation algorithm and 
the associated covariance estimation method are presented 
in Sect. 3. The details of the integrity monitoring framework 
are discussed in Sect. 4. In Sect. 5, we validate the proposed 
algorithm with simulations. Finally, the conclusions are 
drawn in Sect. 6.

2  Basic principle of visual navigation

Visual navigation is an accurate and robust technique to esti-
mate the egomotion (translation and orientation of an agent) 
through utilizing the output from a camera or a laser sen-
sor. Many approaches have been developed since the early 
1980s [7] and they can be roughly divided into the categories 
shown in Table 1.

Since different approaches exhibit noticeable differ-
ence in their implementations, this paper does not intend 
to provide an integrity monitoring framework that covers 
all the approaches. For autonomous platforms operating in 
urban environments, feature-based approaches have been the 
dominant visual navigation solutions for a long time. Under 
urban scenarios, there are rich distinctive features that can be 
extracted from an image, and thus feature-based approaches 
show superior performance to others in terms of efficiency, 
accuracy, and robustness. As for the sensors, as monocular 
vision systems suffer from scale uncertainty, stereo cameras 
are preferred when there is no assistance from external sen-
sors. Therefore, this paper mainly focuses on feature-based 
stereo visual navigation systems. We will expand this work 
to support laser-based navigation in the future.
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As shown in Table 1, feature-based visual navigation 
systems have three operational modes: VO, SLAM, and 
MAL (also called relocalization in the literature). Figure 1 
presents the required procedures in these modes. VO pro-
vides an incremental online estimation of the vehicle pose 
by analyzing the image sequences captured by the camera. 
This is an efficient and convenient approach without any 
dependency on the prior knowledge about the environments, 
but the localization error will accumulate over time. SLAM 
is a technique that allows the vehicle localize itself in an 
unknown environment and incrementally generate a map. 
As shown in Fig. 1, VO is an essential part in SLAM while 
the latter also contains back-end optimization, loop closure, 
and mapping. These additional procedures help improve 
the localization accuracy, but meanwhile they make SLAM 
much more complicated than VO. Through employing the 

pre-established map, MAL allows the vehicle to estimate 
its pose relative to this map. In practice, the map is usually 
accessed from either a map provider or the past-time map-
ping process in SLAM.

In feature-based approaches, feature extraction is a key 
step in which the distinctive features (e.g., lines, curves and 
corners) are extracted from the images. This process can be 
implemented in a variety of ways with different performance 
[1, 7]. The proposed method is generally applicable to vari-
ous features, and we take Oriented FAST and rotated BRIEF 
(ORB) feature as an example to validate our algorithm. As 
a widely used feature descriptor, ORB feature keeps invari-
ant with rotation, translation and scale, and it also pre-
sents strong robustness to camera settings and illumination 
changes [13]. For the features extracted from the current 
image, data association attempts to find the corresponding 

Table 1  Categorization of 
typical visual navigation 
approaches

Classification ways Categories Notes

Sensor Optical camera Monocular, stereo
Laser sensor Light Detection And Ranging (LiDAR)

Measurement Features Using features extracted from the images
Pixels Using pixels or optical flow

Architecture Visual odometry (VO) Relative motion estimation between frames
SLAM Motion estimation and mapping
Map-aided localization (MAL) Pose estimation with pre-established map

Estimation Optimization Nonlinear optimization
Filter Kalman filter (KF), extended KF, etc
Singular value decomposition (SVD) Motion estimation with matched points

Fig. 1  Flowchart of the required 
steps in feature-based visual 
navigation systems
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points in either the previous frame (VO mode) or the local 
map (MAL mode). Using a set of matched feature points, 
VO estimates the motion of the camera between epochs, 
while MAL computes the agent’s pose relative to the map. 
This paper focuses on ensuring localization safety in MAL 
mode, but the methodology can be easily extended to VO 
context because of the great similarity between them.

For MAL, the direct input to the pose estimation module 
is the matched 3D points. In safety–critical applications, it is 
of great importance to pay sufficient attention to the potential 
faults in visual measurements (i.e., point pairs). The faults 
are mainly attributed to two aspects: one is incorrect data 
association due to unfavorable environment conditions, and 
the other is the changes occurring in real world scenes after 
map construction. These faults have the potential to result 
in large navigation error and could place the vehicles in haz-
ardous situations. To ensure operation safety, the naviga-
tion system must continuously provide accurate and reliable 
pose estimates. To this end, this paper aims at developing an 
integrity monitoring framework against measurement faults 
so as to provide safety-assured navigation output.

This section defines the scope of this work and describes 
the required procedures involved in representative visual 
navigation approaches. Without loss of generality, this paper 
assumes that some distinctive features are extracted from 
the outputs of a stereo camera and they are matched with 
the points in the pre-established 3D map. For clarity, the 
detailed implementations of this process are not presented 
here and they do not influence the following derivations.

3  Pose determination and covariance 
estimation

3.1  Measurement equation

The objective of MAL is to determine the agent’s pose, 
i.e., position and orientation, relative to the local map. The 
pose is usually defined as x =

[
�T , tT

]T
, where � = [���]T 

and t =
[
txtytz

]T denote the rotational (in the form of Euler 
angles) and translational parameters, respectively. The state 
vector x corresponds to a 4 × 4 transformation matrix T as 
follows:

where the rotational matrix R is calculated with the roll 
( � ), pitch ( � ) and yaw ( � ) angles:

(1)T =

[
R t

0 1

]

(2)

R(�, �, �) =

⎡⎢⎢⎣

c�c� −c�s� + s�s�c� s�s� + c�s�c�

c�s� c�c� + s�s�s� −s�c� + c�s�s�

−s� s�c� c�c�

⎤⎥⎥⎦
,

where s and c denote sine and cosine functions, respectively.
To estimate the pose, we assume that there are N pairs of 

matched feature points as follows:

where pi and qi represent the 3D coordinates of the i-th fea-
ture point in the camera frame and in the navigation frame, 
respectively. The two frames are linked through R and t , and 
thus we have the following measurement equation:

where �pi and �qi denote the zero-mean Gaussian noise terms 
with covariance matrix Cpi and Cqi , respectively. Note that 
the errors of the feature points are usually assumed to be 
zero-mean Gaussian noises in prior studies [10]. This work 
is also carried out under this assumption, and we will exam-
ine the error model in our future work.

Then we formulate the pose estimation as a nonlin-
ear optimization. Specifically, the navigation states, 
�, �, � , tx, ty, tz , are estimated by minimizing the reprojection 
error of features as:

Equation (7) is essentially a least-squares optimization 
problem. However, since � , � , and � are arguments of non-
linear trigonometric functions in the rotation matrix R , the 
linear LS estimation method cannot be directly applied to 
obtain the solution. In the next section, we present how to 
modify this optimization problem such that it can be solved 
via a linear LS approach.

3.2  Pose determination by iterative LS estimation

The major difficulty in linearly solving Eq. (7) is the strong 
nonlinearity due to the rotation matrix. Fortunately, small-
angle approximation (i.e., s� ≈ � , c� ≈ 1 when � ≈ 0 ) is an 
effective approach to eliminate the nonlinearity. When Δ� , 
Δ� , Δ� ≈ 0 , we have:

where (Δ�×) is the cross product matrix and I denotes 
the 3 × 3 identity matrix. With this approximation, we can 

(3)P =
{
p1, p2,… , pN

}
,Q =

{
q1, q2,… , qN

}
,

(4)∀i,R ∙
(
pi − �pi

)
+ t = qi − �qi,

(5)�pi ∼ ℕ
(
0,Cpi

)
,

(6)�qi ∼ ℕ
(
0,Cqi

)
,

(7)
�
R∗, t∗

�
= argmin

R,t

N�
i=1

‖R ∙ pi + t − qi‖22.

(8)ΔR ≈

⎡⎢⎢⎣

1 −Δ� Δ�

Δ� 1 −Δ�

−Δ� Δ� 1

⎤⎥⎥⎦
≜ I − (Δ�×),
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linearize the measurement equation at a linearization point {
Rl, tl

}
 as:

Accordingly, the original nonlinear optimization prob-
lem can be solved by iterative refinement as follows. At 
each iteration, we linearize the measurement equations 
and stack them as:

where the geometry (Jacobian) matrix G, the reprojection 
error vector Δ� , and the measurement noise � are given by 
the following:

in which R̂
′

 and t̂
′

 denote the estimated transformation 
parameters given by the previous iteration.

Secondly, the least-squares estimation is performed 
and the update for Δx̂ is calculated by:

Then we update the transformation matrix with Δx̂ as:

Finally, we output the estimated pose x̂  when the 
solution has converged, and the last Δ� is defined as the 
residual vector �.

3.3  Covariance calculation

In navigation context, covariance matrix is often used as 
a measure of the uncertainty in the state estimates and 

(9)∀i,
(
pi
||l×

)
∙ Δ� + Δt = Δpi,

(10)∀i, pi
||l = Rl ∙ pi + tl.

(11)Δ� = G ∙ Δx + �,

(12)G =

⎡⎢⎢⎣

�
p
�

1
×
�
I

⋮ ⋮�
p

�

N
×
�
I

⎤⎥⎥⎦
,

(13)Δ� =

⎡⎢⎢⎣

q1 − p
�

1

⋮

qN − p
�

N

⎤⎥⎥⎦
,

(14)p
�

i
= R̂

�

∙ pi + t̂
′

,

(15)� =

⎡⎢⎢⎢⎣

R̂
�

∙ �p1 − �q1
⋮

R̂
�

∙ �pN − �qN

⎤⎥⎥⎥⎦
,

(16)Δx̂ =
(
GTG

)−1
GT ∙ Δ�

(17)
[
R̂ t̂

0 1

]
=

[
ΔR̂ Δ̂t

0 1

]
∙

[
R̂

�

t̂
′

0 1

]

covariance estimation lays a foundation for accuracy evalua-
tion and integrity monitoring. The pose uncertainty is caused 
by the measurement errors, and the key of covariance esti-
mation is to derive the error propagation formula. According 
to Eq. (15), the covariance matrix Ci of the measurement 
noise corresponding to the i-th feature is computed as:

Assuming that the measurement errors of different fea-
tures are uncorrelated, the stacked covariance matrix for all 
the features is a block diagonal matrix as follows:

Based on Eq. (16), we can directly determine the state 
perturbation �x as follows:

The covariance matrix of �x is given by:

where S� =
(
GTG

)−1
GT.

However, C� is not the error covariance matrix of the pose 
estimates because the pose error �x = x̂ − x is not equal to 
the state perturbation �x . The relationship between x̂ and �x 
is established through the transformation matrix:

This equation can be further rewritten as:

Then we have:

The detailed proof of Eq. (24) is given in “Appendix”.
Accordingly, the covariance matrices of �� and �t are, 

respectively, given by:

(18)Ci = R̂ ∙ Cpi ∙ R̂
T
+ Cqi

(19)C =

⎡
⎢⎢⎣

C1

⋱

CN

⎤
⎥⎥⎦

(20)�x =
[
��T, �tT

]T
=
(
GTG

)−1
GT ∙ �

(21)C� = S� ∙ C ∙ ST
�,

(22)
[
R̂ t̂

0 1

]
=

[
�R �t

0 1

]
∙

[
R t

0 1

]
.

(23)
[
R̂ t̂

0 1

]
=

[
�R ∙ R �R ∙ t + �t

0 1

]
.

(24)

𝜺� = �̂� − 𝝋 =

⎡⎢⎢⎣

c�∕c� s�∕c� 0

−s� c� 0

c�s�∕c� s�s�∕c� 1

⎤⎥⎥⎦
⋅ �𝝋 ⋅ A� ⋅ �x

(25)�t = t̂ − t = (t×) ∙ �� + �t ≜ At ∙ �x.

(26)C� = A� ∙ C� ∙ A
T
�
,
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4  Integrity monitoring framework for visual 
navigation

4.1  Input parameters

As mentioned earlier, feature-based visual navigation sys-
tems will occasionally encounter measurement faults which 
greatly threaten the operation safety. This paper leverages 
the concept of integrity into visual navigation context and 
develops an integrity monitoring framework correspond-
ingly. This framework can not only cope with the misleading 
features, but also determine the probabilistic error bound of 
the pose estimate. The framework requires some essential 
inputs to ensure its reliability, including measurement error 
models, prior fault probabilities, and the predefined naviga-
tion performance requirements.

Table 2 presents the error models and the prior fault 
probabilities of each feature. The error models stem from 
a preliminary analysis on measurement errors based on 
KITTI dataset which provides ground truth and outputs 
from a stereo camera. In addition, it should be noted that 
the fault probability here represents the probability of an 
“inlier” being faulted after the first-layer outlier rejection 
(i.e., RANSAC). The two-layer fault detection scheme will 
be illustrated in detail in Sect. 4.2. Since the prior fault prob-
ability may vary with the settings in RANSAC, this work 
also carries out sensitivity analysis over this parameter with 
the values given in Table 2.

(27)Ct = At ∙ C� ∙ A
T
t
. The navigation requirement parameters mainly consist 

of the target integrity risk and the continuity risk coming 
from false alert. Integrity risk is defined as the probability 
that the navigation system provides hazardous misleading 
information (HMI) without warning the user. False alert is 
an event occurring when the fault detector indicates a fault 
state in a fault-free condition and it is a major cause of the 
loss of navigation continuity. Table 3 shows the preliminary 
values of these parameters, which are representative of typi-
cal requirements in safety–critical applications. Since the 
requirements are actually application dependent, we will 
determine the navigation requirements for specific vehicular 
applications in future work.

4.2  Two‑layer fault detection scheme design

For vehicular applications in urban environment, visual navi-
gation system may work in a situation where there is a large 
number of measurements and the fault ratio is considerably 
high. This scenario is beyond the capability of traditional 
integrity monitoring schemes developed in GNSS applica-
tions. In response, we develop a two-layer fault detection 
scheme which combines the advantages of RANSAC and 
MHSS to improve detection efficiency and ensure naviga-
tion integrity.

Before the description of this scheme, we first clar-
ify the basic assumptions. We assume that quality con-
trol is performed in the map generation process. To be 
more specific, the non-static objects are a big threat to 
the visual navigation system, and we assume that most 
of these unwanted objects are excluded from the map. 
This exclusion step can be realized by the map provider 
using ground truth data and some object classification 

Table 2  Error models and prior 
fault probabilities

Note: diag() returns a square diagonal matrix with the elements inside the brackets

Parameter Description Value (Preliminary)

Cpi Error covariance matrix for pi diag([0.52, 0.52,  12]), unit:  m2

Cqi Error covariance matrix for qi diag([0.52, 0.52,  12]), unit:  m2

pfi Prior fault probability for feature i {10−3,  10−4,  10−5}

Table 3  List of navigation 
performance requirements

Parameter Description Value (preliminary)

PHMI Total integrity budget 6 × 10−7

PHMI,R Integrity budget for each rotational component 10−7

PHMI,T Integrity budget for each translational component 10−7

PTHRES Threshold for integrity risk from unmonitored faults 10−8

PFA Continuity budget allocated to false alarm 6 × 10−6

PFA,R False alarm probability for each rotational component 10−6

PFA,T False alarm probability for each translational component 10−6
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techniques. Detailed implementation of this step is beyond 
the scope of this paper. Under this assumption, it is very 
unlikely that there are significantly many outliers with 
strong consistency.

In the first layer, RANSAC is employed to exclude the 
outliers from raw visual measurements. RANSAC achieves 
its goal by repeating the following steps [9]:

1. Randomly choose a subset of the feature correspond-
ences as the initial consensus set.

2. Estimate the navigation parameters using this subset.
3. All other features are then tested against the estimate 

and those points that fit the estimated parameters well 
(comparing with a predefined threshold) are added to the 
consensus set.

This procedure is repeated a fixed number of times and 
the consensus set with the most inliers is output as the inlier 
set. RANSAC is an effective approach to remove most of 
the outliers even though the outlier ratio is high, and thus it 
is widely used in vision-based navigation. Under the afore-
mentioned assumption, RANSAC will not be misled by the 
outliers and can reduce the outlier rate to a sufficiently low 
value. The number of iterations and the threshold for out-
lier identification greatly impact the fault probability after 
RANSAC, i.e., the probability of an inlier being faulted. 
Therefore, we need to properly determine the fault prob-
ability by specifying the RANSAC settings. This is beyond 
the scope of this paper but involved in another work of us.

The fault probability is expected to be significantly low 
(e.g.,  10–3,  10–4 or  10–5) with appropriate RANSAC set-
tings. However, we cannot guarantee the safety of visual 
navigation system by only using RANSAC. This is because, 
on the one hand, the low-probability events still need to 
be monitored in safety–critical applications. On the other 
hand, though the navigation errors can be greatly reduced 
after performing RANSAC, it is very difficult to derive the 
associated probabilistic error bound as required by integrity 
monitoring algorithm.

As a result, we employ the MHSS technique as the second 
layer to further detect the faults, and more importantly, to 
make it convenient for quantifying navigation safety. MHSS 
has been widely implemented in integrity monitoring algo-
rithms because it offers two significant advantages: it is effec-
tive in coping with the multiple simultaneous faults, and it 
provides a straightforward proof of integrity. The step-by-step 
procedures of MHSS are illustrated in detail as follows.

MHSS realizes the detection of both single and multiple 
faults through establishing a list of subsets, each of which 
corresponds to a fault mode. It should be noted that there is 
an obvious difference between the process of subset determi-
nation in RANSAC and in MHSS. RANSAC intends to find 
a very small subset of feature points so that all of them are 
inliers. In MHSS, each subset contains most of the observa-
tions because it is assumed that there are only a few faulted 
features after performing RANSAC.

When utilizing MHSS, one can determine the subsets that 
need to be monitored based on the prior fault probability of 
each feature. The associated probability of each fault mode 
(or subset) is determined by multiplying the fault probabili-
ties of the features that are assumed faulted in this mode. 
The fault modes with relatively low probability are not mon-
itored, and we use a predefined threshold  PTHRES to bound 
the integrity risk coming from these unmonitored modes. In 
this process, we can also obtain the maximum number Nf ,max 
of simultaneous faults that need to be monitored. One can 
implement the subset determination following the detailed 
procedures shown in the ARAIM baseline algorithm [4], by 
regarding each feature as a “satellite” and setting the constel-
lation fault probability to 0.The outputs of this step include: 
the monitored subsets (indexed by j = 0,1,… ,Ns ), Nf ,max , 
the fault probability p(j)

fs
 of each subset, and the total integrity 

risk pnm coming from the unmonitored modes.
Then we calculate the test statistics and the correspond-

ing thresholds. For subset j , the difference Δx(j) between 
the fault-tolerant solution x(j) and the all-in-view solution 
x(0) is given by:

where the coefficient matrix S(j) is calculated by the 
following:

in which the 3n × 3n diagonal matrix W(j) is obtained 
by:

Let the index q = 1, 2 and 3 designate three attitude 
components, and q = 4, 5 and 6 represent the translational 
components. The variances of x(j) and Δx(j) are, respec-
tively, given by:

(28)Δx(j) = x(j) − x(0) =
(
S(j) − S(0)

)
⋅ y,

(29)S(j) =

[
A�

At

](
GTW(j)G

)−1
GTW(j),

(30)
W

(j)(3i − 2 ∶ 3i, 3i − 2 ∶ 3i) =

{
0, when feature i is assumed faulted in subset j

1, otherwise

(31)�(j)2
q

= cov
(
x(j)
q
, x(j)

q

)
= eT

q
S(j)CS(j)Teq,
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in which eq is a vector whose q-th entry is 1 and all oth-
ers are 0.

For each fault mode, there are six solution separation 
tests, one for each rotational or translational component. The 
corresponding thresholds are calculated by the following:

where,

Q−1(p) is the (1 − p) quantile of a zero-mean unit-variance 
Gaussian distribution. The coefficients Kfa,q reflect the prob-
ability of false alarm. The navigation system is declared to 
pass the second-layer fault detection only if for all j and q 
we have the following:

If any of the tests fails, the navigation system will lose 
its continuity. To improve navigation continuity under fault 
conditions, fault exclusion should be attempted. We do not 
provide an exclusion scheme here, but we will develop an 
accurate and efficient exclusion algorithm in future work.

For real-time applications, it is imperative to take the 
algorithm complexity into consideration. From this perspec-
tive, the scheme above may be computationally expensive 
due to the large number of measurements. To address this 
issue, we introduce a technique, fault grouping, which can 

(32)
�(j)2
ss,q

= cov
(
Δx(j)

q
,Δx(j)

q

)
= eT

q

(
S(j) − S(0)

)
C
(
S(j) − S(0)

)T
eq,

(33)T (j)
q

= Kfa,q ⋅ �(j)
ss,q

(34)Kfa,q =

⎧
⎪⎨⎪⎩

Q−1
�

PFA,R

2Ns

�
, q = 1, 2, 3

Q−1
�

PFA,T

2Ns

�
, q = 4, 5, 6

(35)� (j)
q

=

|||x
(j)
q − x(0)

q

|||
T
(j)
q

≤ 1.

greatly reduce the number of monitored subsets. The basic 
idea of this technique is to divide the image into several 
non-overlapping zones, called superpixels, each of which 
includes a group of features. Figure 2 illustrates the genera-
tion of superpixels by using a 2D example.

After introducing the fault grouping technique, we can 
determine the monitored subsets following the same proce-
dure as that in the traditional MHSS method. But we need 
to regard each superpixel as an individual “feature” in this 
case. The prior fault probability of the superpixel, which 
represents the probability of any feature in it being faulted, 
is given by the following:

where pf  and psp denote the prior fault probability of each 
feature and each superpixel, respectively; and np is the num-
ber of features in this superpixel.

4.3  Protection level calculation

Protection level (PL) is a probabilistic error bound com-
puted so as to guarantee that the probability of the pose error 
exceeding the said number is smaller than or equal to the 
target integrity risk [15]. In this paper, the PL is defined 
separately for each pose component. The protection level 
 PLq for the q-th component can be determined by solving 
the following equation:

where,

The proof of safety associated with this protection level 
and the method to solve Eq. (37) are shown in ARAIM base-
line algorithm [4]. In this equation, each term of the right-
hand side is an upper bound of the contribution of each fault 
mode to the integrity risk and the left-hand term is the target 
integrity risk allocated to the monitored subsets.

5  Experiments and results

In this section, several simulations are carried out to validate 
the proposed algorithms. To represent the feature geometry 
in true urban environments, we extract the ORB features 
from an image provided by KITTI dataset [6]. The depth of 
each feature is also calculated by comparing the outputs of 
the left and right cameras. Figure 3 shows the geometry of 

(36)psp = 1 −
(
1 − pf

)np ,

(37)

PHMI,q

(
1 −

pnm

PHMI

)
= 2Q

(
PLq

�
(0)
q

)
+

Ns∑
j=1

p
(j)

fs
Q

(
PLq − T

(j)
q

�
(j)
q

)
,

(38)PHMI,q =

{
PHMI,R, q = 1, 2, 3

PHMI,T , q = 4, 5, 6

Fig. 2  Illustration of image segmentation in a 2D case (each rectangle 
is an individual superpixel)
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the extracted features in the camera frame. We assume that 
this image comes from a vehicle running in a well-mapped 
environment and the feature correspondences between this 
image and the map have been determined. To simulate noisy 
measurements, we add white noises to the feature points 
according to the measurement error covariances shown in 
Table 2. Because the proposed pose estimation and integ-
rity monitoring schemes are both “snapshot” methods, i.e., 
the results only rely on the current observations, the static 
scenario shown in Fig. 3 is sufficient for the performance 
evaluation.

Based on the simulated feature correspondences, we 
firstly validate the proposed pose determination algorithm 
and the associated covariance estimation methodology. To 
capture the covariance variation over vehicle’s pose, the ten 
scenarios shown in Table 4 are used to perform this analysis. 
The parameters in this table represent the poses of the vehi-
cle relative to the local map. For each scenario, we conduct 
Monte Carlo simulations to generate 5000 random scenarios 
which are used to statistically determine the error standard 
deviations. Figure 4 presents the statistical and estimated 
error standard deviations. The results suggest that the navi-
gation state parameters can be estimated with satisfactory 
accuracy by using the proposed algorithm, and they also 
prove the feasibility of the covariance estimation methodol-
ogy. This figure shows that the pose uncertainty is obviously 
sensitive to the vehicle’s attitude while keeps invariant over 
translational parameters.

Then we conduct another simulation to reveal the impacts 
of fault grouping on both the computational complexity and 
the navigation performance. In this simulation, we assume 
that the features shown in Fig. 3 constitute the inlier set 
generated by RANSAC. The fault probability of each feature 
is set to different values for sensitivity analysis. In addi-
tion, fault grouping is performed through dividing the 3D 
image into several cuboids whose size greatly impacts the 
grouping results. Table 5 shows the comparison of CPU time 

Fig. 3  Feature points in an image and their spatial distribution

Table 4  List of the cases used 
in the simulations

Case no 1 2 3 4 5 6 7 8 9 10

Roll ( �)/rad 0 0 �∕6 �∕3 0 0 �∕3 �∕6 �∕6 �∕6

Pitch ( �)/rad 0 0 0 0 �∕6 �∕3 �∕3 �∕6 �∕6 �∕6

Yaw ( �)/rad �∕6 �∕3 0 0 0 0 �∕3 �∕6 �∕6 �∕6

X ( tx)/m 0 0 0 0 0 0 0 0 0 5
Y ( ty)/m 0 0 0 0 0 0 0 0 0 5
Z ( tz)/m 5 5 5 5 5 5 5 5 10 10

Fig. 4  The statistical (solid lines) and estimated (dashed lines) error standard deviations
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among different grouping results, and Fig. 5 presents the 
associated protection levels. The simulation is run on the 
MATLAB 2018b software installed on a laptop with Intel 
Core i5-8300H and 8 GB memory. Note that we do not cal-
culate the protection levels for case 1 because this process 
consumes a lot of time.

According to the results shown in Table 5 and Fig. 5, 
we can draw the following conclusions. First, the integrity 
monitoring framework cannot be applied to real-time appli-
cations without employing fault grouping. Second, fault 
grouping can greatly decrease the time consumption through 
reducing the number of subsets while at an expense of the 
increase in protection levels. Thirdly, the sensitivity analysis 
over fault probability suggests that high fault probability will 
lead to great number of subsets and large protection levels. 
Therefore, it is imperative to perform the first layer fault 
detection because it can effectively reduce the fault prob-
abilities of the features used in the second layer detection.

Finally, we validate the proposed fault detection scheme 
through simulating two fault scenarios. As shown in Fig. 3, 
some features (labeled as superpixel A) are extracted from 
the motorcycle in the center of the image, and some other 
features (labeled as superpixel B) locate at the tree in the 

left of the image. In the first scenario, we manually inject 
a 10-m fault to the depth component of superpixel A. This 
represents a case where there is a non-static landmark in 
the map. The second one is a multi-fault scenario, which is 
simulated by adding a 5-m fault to the depth component of 
superpixel B in addition to the fault in superpixel A. The 
fault in superpixel B might be caused by the incorrect feature 
matching. The parameters adopted in Monte Carlo simula-
tions are shown in Table 6.

Figure 6 shows the position errors in Z direction (usu-
ally the direction along the street) under nominal and 

Table 5  Computational 
complexity comparison among 
different grouping results

Case no pfi Number of superpixels Number of subsets Time consuming

1 10−3 152 (no grouping)  > 20,000,000 Very long
2 10−3 40 (small cuboid) 561,001 777.10 s
3 10−3 17 (big cuboid) 4352 6.18 s
4 10−4 152 577,654 784.39 s
5 10−4 40 8336 11.20 s
6 10−4 17 514 0.88 s
7 10−5 152 11,535 16.60 s
8 10−5 40 735 1.23 s
9 10−5 17 127 0.34 s

Fig. 5  The variation in protection levels over fault grouping results and prior fault probabilities

Table 6  The parameters used in the simulations

Parameters Values

(�, �, �) [0, 0, 0] rad(
tx, ty, tz

)
[0, 0, 6] m

pfi 10−5

Number of superpixels 17
Measurement errors See Table 2
Simulation times 1000
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faulted conditions. It is obvious that compared to fault-free 
case, the position errors are significantly larger in the pres-
ence of visual faults. Because large navigation errors may 
lead to serious accidents, it is necessary to perform fault 
detection in safety–critical applications. Figure 7 presents 
the results of fault detection under the three scenarios. The 
fault detector will issue an alarm when the statistics exceed 
the thresholds. As shown in this figure, there is no missed 
detection or false alarm occurring in this experiment. 
Therefore, the results prove the promising performance 
of the fault detection scheme under both single-fault and 
multi-fault conditions.

6  Conclusions

This paper develops an integrity monitoring framework to 
ensure the safety of feature-based visual navigation. In this 
framework, we design a two-layer fault detection scheme 
to cope with misleading features and rigorously derive the 
protection levels to quantify navigation safety. To support 

real-time applications, we also leverage the fault group-
ing technique to reduce the computational complexity 
of this framework. Several Monte Carlo simulations are 
carried out to validate the proposed algorithms. Firstly, 
the results prove the feasibility of the least squares (LS)-
based pose determination algorithm and the associated 
covariance estimation method. In addition, a key trade-off 
between computational complexity and navigation integ-
rity is pointed out: fault grouping can greatly reduce time 
consumption of the algorithm while at the expense of the 
increase in protection levels. We also reveal that high prior 
fault probability can simultaneously lead to large compu-
tational burden and poor navigation performance. Finally, 
simulation results suggest the promising performance of 
the proposed fault detection algorithm. Our future work 
will focus on validating the proposed framework with 
open-source datasets, investigating an efficient fault exclu-
sion algorithm, and optimizing the two-layer fault detec-
tion scheme.

Fig. 6  Position errors in Z direction under fault-free and faulted conditions
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Appendix: Proof of Eq. (24)

�� is usually called misalignment angles, while �� denotes 
the errors in attitude angles. The relationship between 
them is given by the following:

where Cn
b
= RT and C�

A
 is shown as:

This equation is obtained from the attitude kinematic 
equation. Substituting (40) to (39),

(39)�� = Cn
b
⋅ C�

A
⋅ ��,

(40)C�
A
=

⎡⎢⎢⎣

1 0 −s�

0 c� s�c�

0 −s� c�c�

⎤⎥⎥⎦
.

Therefore, we have:
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